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Abstract— In this paper, we address the problem of stable
coordinated motion in multi-robot systems with limited fields
of view (FOVs). These problems arise naturally for multi-robot
systems that interact based on sensing, such as our case study
of multiple unmanned aerial vehicles (UAVs) each equipped with
several cameras that are used for detecting neighboring UAVs.
In this context, our contributions are: i) first, we derive a frame-
work for studying stable motion and distributed topology control
for multi-robot systems with limited FOVs; and ii) Then, we
provide experimental results in indoor and challenging outdoor
environments (e.g., with wind speeds up to 10 mph) with a team
of UAVs to demonstrate the performance of the proposed control
framework using a portable multi-robot experimental set-up.

I. INTRODUCTION

Multi-robot systems are experiencing a surge in interest
from the robotics community. With the success of single robot
systems over the past decade, the promise of meaningful multi-
robot applications beyond laboratory environments has steadily
increased. In particular, the rapid advancement in perception,
embedded computation, point-to-point communication, and
the availability of reliable and robust off-the-shelf robotic
platforms have been key to recent success in the area of multi-
robot systems. Indeed, multi-robot systems are being actively
deployed in various important applications, including search
and rescue missions [1], autonomous inventory management
[2], and precision agriculture [3]. However, there are important
theoretical and application oriented issues unique to multi-
robot systems which must be overcome. In this paper, our
concern will be interaction in distributed multi-robot systems
with perception that is limited in its field of view (FOV).

When operating in a distributed setting where global in-
formation is not available to all robots, a multi-robot system
must rely on perceptual sensors like cameras, laser range
finders, ultrasonic detectors, etc., that exhibit limited fields
of view. From a theoretical perspective, limited field-of-view
perception induces asymmetry in robot-to-robot interaction
which introduces the possibility of degeneracies in typical
coordinated motion control schemes [4]–[12]. In fact, our
recent work [13] has demonstrated that unlike symmetrically
interacting systems, asymmetric interactions must be carefully
chosen to yield stable and safe coordinated motion.
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Related work can be separated into three topics: asymmetric
motion control, interaction optimization, and applications
of perception in multi-robot systems. Work in asymmetric
motion control is relatively new, with recent examples like
[14], where the authors address the edge agreement problem of
second-order non-linear multi-agent systems under quantized
measurements for directed graphs. More generally, various
prior works such as [15] have accounted for multi-agent
systems over directed networks, often with the assumption
that the graph is strongly connected. Topology control for
directed graphs is also quite sparse, with recent examples [13],
[16], [17] focusing on overcoming the theoretical shortcuts that
are lost when the symmetry assumption is broken. Interaction
optimization is instead a more mature area, with examples
including connectivity maximization [18], [19] and optimal
rigid graph construction for multi-agent localization [20].
Finally, several recent works have exploited advanced per-
ception in multi-robot systems, with examples including [21]
which achieves multi-target tracking with camera-equipped
unmanned aerial vehicles (UAVs), [22] which applies collab-
orative structure from motion for UAV formation control and
[23] which demonstrates a distributed optimization framework
for multi-robot collaborative tasks using vision. [24] has also
demonstrated the use of a multi-robot system for various
multi-robot collaborative applications in different experimental
settings using onboard sensors.

While recent work has made progress in each of the three
areas outlined, we propose in this work a problem that spans
asymmetric control and realistic multi-robot perception. We
further validate the theoretical findings using a portable multi-
robot experimental setup based on ultra-wide band localization.
This portable testbed gives us the capability to validate our
methods with the logical progression of testing our work first
in simulation, then in controlled indoor environments and
finally in realistic outdoor environments. In this regard, our
contribution is twofold. First, we extend our framework [13]
to study stable motion and distributed topology control for
multi-robot systems with limited FOVs. Then, we provide
experimental results with a team of DJI Matrice 100 UAVs
performing motion control with limited FOVs to demonstrate
the proposed control framework.

II. PRELIMINARIES

Consider a multi-robot system composed of n robots,
each having motion that evolves according to the following



dynamics
ẋi(t) = ui(t) (1)

with xi(t) ∈ Rd the robot state (position), ui(t) ∈ Rd the
control input, and time t ∈ R≥0. Stacking robot states and
inputs yields the overall system

ẋ(t) = u(t) (2)

with x(t) = [xT1 (t), . . . , x
T
n (t)]

T ∈ Rnd and
u(t) = [uT1 (t), . . . , u

T
n (t)]

T ∈ Rnd the stacked vector
of states and control inputs, respectively. The distance between
robots i and j is denoted by ‖xij(t)‖ , ‖xi(t)− xj(t)‖, with
the standard Euclidean norm. Note that dependence on time,
state, and/or a graph will only be shown when introducing
new concepts or symbols. Subsequent usage will drop these
dependencies for clarity of presentation.

We assume the robots possess proximity-limited communic-
ation and sensing with limited field of view, yielding robot-to-
robot interactions that change over time according to system
motion. Let us model the robot-to-robot (communication and
sensing) interactions by means of a dynamic directed graph de-
noted by G(t) , (V, E(t)) with node set V , [v1, ..., vn] and
edge set E(t) ⊆ V × V . Regarding proximity-limited commu-
nication, let us define radii ρi,c ∈ R+,∀ i ∈ {1, . . . , n}, within
which communication can occur for each robot. As a result, we
can define the communication graph Gc = (V, Ec) with edges
Ec = {(i, j) | ‖xij‖ ≤ ρi,c, i, j ∈ V}. Regarding sensing with
limited field of view, let us define for each robot i the set of
functions Si =

{
ski , s(xi, θ

k
i , α

k
i , ρ

k
i,s), k = 1, . . . , mi

}
encoding the mi circular (or spherical) sectors where αki
denotes the central angle of the k-th circular sector located
at xi of radius ρki,s and of orientation θki . As a result, we
can define the sensing graph as Gs = (V, Es) with edges
Es = {(i, j) |xj ∈ Si, i, j ∈ V}. Later, we will also introduce
GFOV
s = {V, EFOV

s } the interaction graph encoding pairwise
sensing interactions with limited field of view which is the
same as Gs except sensing with limited FOV. This four field-
of-view sensing model is motivated by the UAV platform we
currently use for experiments. The reader is referred to Figure 1
for a graphical representation of a robot possessing proximity-
limited communication and sensing with limited FOVs.

In the case of directed graphs, the edge (i, j) in-
dicates asymmetric interaction (sensing or communica-
tion) between a robot i and another robot j. Denote by
N+
i (t) := {j ∈ V : (i, j) ∈ E(t)} the set of out-neighbors of

robot i and N−i (t) := {j ∈ V : (j, i) ∈ E(t)} the set of
in-neighbors. In the sequel, we will always refer by N+

i and
N−i to the sensing out-neighborhood and in-neighborhood,
respectively. It is also assumed that (i, i) /∈ E . In addition,
when referencing single edges we will use two conventions: ek
is the k-th directed edge out of |E| total edges, whereas eij is
the directed edge leaving from vertex vi and entering vertex vj .

The incidence matrix B(G(t)) ∈ Rn×|E| of a graph G, is a
matrix with rows indexed by robots and columns indexed by
edges, such that Bij = 1 if the edge ej leaves vertex vi, −1 if
it enters vertex vi, and 0 otherwise. The outgoing incidence
matrix B+ contains only the outgoing parts of the incidence
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Fig. 1. Modeling of proximity-limited communication with radius ρi,c and
sensing with limited fields of view Si = {s1i , s2i , s3i , s4i } for a robot i

matrix B, with incoming parts set to zero. The undirected
Laplacian matrix L ∈ Rn×n is obtained asL = BBT , whereas
the directed Laplacian matrix Ld ∈ Rn×n is computed as
Ld = BBT+. The undirected Laplacian matrix L is symmetric
positive-semidefinite, whereas the directed Laplacian matrix
Ld is generally asymmetric and indefinite. We will also make
use of the undirected edge Laplacian LE ∈ R|E|×|E| defined
as LE = BTB and the directed edge Laplacian LdE ∈ R|E|×|E|
given by LdE = BTB+. For properties of the edge Laplacian
see for example [25] and [14].

III. STABLE DIRECTED COORDINATION WITH FOVS

A. Directed Coordination Framework

Potential-based control design is a commonly used frame-
work for controlling multi-robot systems [4]–[12]. The basic
idea is to encode the energy of a system as a potential
function V (x(t)) ∈ R+ such that the desired configurations of
the multi-robot system correspond to critical points. Thus,
a control law can be designed to achieve these configur-
ations by driving the system along the negative-gradient
u = −∇xV . Control objectives that are pairwise, and thus
distributed across a multi-robot system, can be designed by
associating a (continuously differentiable1) potential function
Vij(x) , Vij(xi, xj) ∈ R+ with robots i and j. The control
input for the i-th robot is then defined as

ui(t) = −
∑
j∈N+

i

∇xiVij = −
∑
j∈N+

i

aij(‖xij(t)‖)xij (3)

where aij(‖xij(t)‖) ∈ R is a smooth, time-varying scalar
weight function that can take arbitrary values for edges
(i, j) ∈ E , and where aij does not necessarily equal aji.

Now, let the Lyapunov function V : Rnd → R+ be a
continuously differentiable function, defined in the standard

1A generalization to handle non-smooth potential functions can be found
in [11], [26]. Here, for the sake of simplicity, smooth pairwise potentials are
assumed.



manner

V (x(t)) =

n∑
i=1

∑
j 6=i

Vij(‖xij‖) (4)

with time derivative

V̇ = (∇xV )
T
ẋ (5)

from simple application of the chain rule. As detailed in [13],
it is possible to derive a convenient edge-based form of∇xV
and ẋ that will eventually reveal the graph topology and (5)
can be rewritten as

V̇ = −ξT
[
LdE ⊗ Id

]
ξ = −xT

[(
BWLdEWBT

)
⊗ Id

]
x

(6)
where from [13], we have a weighted version of ξ defined as

ξ =
(
W (t)BT ⊗ Id

)
x (7)

with W (t) = diag
([
ae1 , . . . , ae|E|

])
where it can be noticed

that further topological structure is given to the variable
ξ. With the addition of the time-varying weight matrix W ,
proving stability means that it is necessary to prove that for
every matrix W encoding a certain potential-based control at
any time t, the asymmetric matrix BWLdEWBT ∈ Rn×n is
positive semidefinite. Instead, we want to know for any weight
matrix W if the system is stable. This question is captured by
the following result from [13] with a correction.

Lemma 1. For any W = diag
([
ae1 , . . . , ae|E|

])
∈ R|E|×|E|

associated with Gs, there exists Ŵ such that(
WBT ⊗ Id

)
=
(
BT Ŵ ⊗ Id

)
(8)

whenever BTB , LE is invertible.

Next, by applying Lemma 1 to (6), we obtain

V̇ = −ξT
[ (
BTB+

)
⊗ Id

]
ξ = −zT

[ (
LLTd

)︸ ︷︷ ︸
S

⊗ Id
]
z

(9)
with z = (Ŵ ⊗ Id)x ∈ Rnd and S ∈ Rn×n the structural
Lypaunov matrix, where by structural we refer to the fact that
this matrix is by construction compatible with the network
sensing graph Gs and independent of the system state between
changes in Gs.

We can now notice that the Lyapunov time derivative in (9)
is in a typical quadratic form and the characteristics of this
quadratic equation are dependent on the properties of the
structural Lyapunov matrix S. However, as the S matrix
is asymmetric in nature, the typical algebraic definition of
positive semi-definiteness does not apply (i.e., non-negativity
of eigenvalues). Hence, the Lyapunov stability analysis is
carried out on the symmetrized S, S+ = 1

2 (S + ST ),
as positive semi-definiteness of S+ implies positive semi-
definiteness of S. The following theorem from [13] provides
a sufficient condition for establishing the stability of directed
potential-based objectives.

Theorem 1. Assuming the conditions for Lemma 1 hold, and
1/2[(BTB+) + (B+)T (B)] is positive definite, the system (1)

with robot controls (3) is stable in the sense that if V is initially
finite it remains finite for all time t > 0.

B. Coordination Framework with Limited Field of View

So far, a stable motion framework for multi-robot systems
with directed interactions has been reviewed and for more
clarity we refer the reader to [13]. Notably, the underlying
assumption of this framework is that each robot has its
own proximity-limited communication and sensing capability
described by two radii ρi,c, ρi,s ∈ R+,∀ i ∈ {1, . . . , n},
within which sensing and communication can occur for each
robot, respectively. We are now interested in taking a step
further and deriving a mathematical modeling for sensing with
limited fields of view. From the previous section it follows that
our objective can be stated as the problem of finding a way of
modeling pairwise directed interactions based on sensing with
limited fields of view, by means of a composition of pairwise
gradients satisfying the requirements outlined above.

In order to proceed, first we need to provide a mathem-
atical formalization of pairwise directed interactions with
limited field of view. In this regard, let us denote with
GFOV
s = {V, EFOV

s } the interaction graph encoding pairwise
sensing interactions with limited field of view. At this point,
let us introduce an extended state xi defined as

xi =
[
x◦i
T , x/,1i

T
, xO,1i

T
, x.,1i

T
, . . .

. . . , x/,mii
T
, xO,mii

T
, x.,mii

T
]T

for each robot composed of the robot location itself, that
is x◦i = xi, and a set of virtual points {x/,ki , xO,ki , x.,ki }
that move as if they were rigidly attached to a robot i
for each circular sector k belonging to the limited field of
view Si. Note that, the position of each set of virtual points
{x/,ki , xO,ki , x.,ki } is defined according to the orientation θki
of the k-th circular sector to which such set is associated, that
is xτ,ki = Rτ,ki (xi)xi + tτ,ki (xi) where {Rτ,ki (xi), t

τ,k
i (xi)}

are pairs of proper rotation matrices and translation vectors and
τ is an element of the set T , {/,O, .} denoting the virtual
points.

At this point, for each robot i we can introduce an approx-
imation s̃ki of the k-th circular (or spherical) sector ski as

s̃ki =
{
x ∈ Rd : ‖x◦i − x‖ ≤ ρki,1 ∧ ‖x

τ,k
i − x‖ ≥ ρ

k
i,2

}
(10)

for all τ ∈ T and ρki,1, ρ
k
i,2 ∈ R+ two radii chosen in such

a way to approximate the k-th circular (or spherical) sector
of the i-th robot as defined by s(xi, θki , α

k
i , ρ

k
i,s), where ∧ is

the logical “and” operator. Therefore, it follows that given
two robots i and j with state xi and xj respectively, we say
that the robot j is within the limited sensing field of view
of robot i if there exists at least one approximation2 s̃ki with
k ∈ {1, . . . , mi}, such that xj ∈ s̃ki . The reader is referred
to Figure 2 for a graphical representation of the set of logical
conditions given in (10).

2If there is more than one circular (spherical) sector for which xj ∈ s̃ki
then we assume robot i locally selects the best one according to some sensing
metric. This guarantees that our sensing graph does not become a multigraph.
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Fig. 2. Approximation s̃ki of the k-th circular sector ski for the limited field of
view Si of an robot i by means of the set of logical conditions given in (10).

We are now ready to illustrate how by introducing for each
robot i the extended state xi, it is possible to approximate any
desired pairwise sensing interaction with limited field of view.
Intuitively, the idea is that for each edge (i, j) ∈ GFOV

s we
can use a set of virtual points {x/,ki , xO,ki , x.,ki } along with
the actual robot location x◦i to describe the desired interaction
by means of a proper combination of gradients satisfying the
requirements previously outlined. This allows us to derive
a modeling of the multi-robot system with limited field of
view, which we will refer to as the extended system, which is
amenable to the theoretical framework described above.

As a case study, let us consider the maintenance of a
desired topological property P as the design objective for
the pairwise directed sensing interaction with limited field.
More specifically, to the scope of this paper, let us assume
the topological property of interest to be the maintenance
of a directed link (i, j) ∈ E . Notably, this objective can be
translated in a setting with limited field of view by considering
the following extended dynamics of each robot i:

ẋ◦i = −
∑
j∈N+

i

(
∇x◦i V

◦
ij +

∑
τ∈T
∇
x
τ,kj
i

V
τ,kj
ij

)
︸ ︷︷ ︸

ui

(11)

with ẋτ,qi = ui, q = 1, . . . ,mi for each virtual point
τ ∈ T , where N+

i =
{
j ∈ V, | (i, j) ∈ EFOV

s

}
is defined

according to (10), kj denotes the index k for which xj ∈ s̃ki
with k ∈ 1, . . . ,mi and the potentials V ◦ij(‖x◦i − xj‖),
V
τ,kj
ij (‖xτi − xj‖) can be chosen such that

V
◦,kj
ij (‖x◦i − xj‖)→∞ as ‖x◦i − xj‖ → ρki,1,

V
τ,kj
ij (‖xτi − xj‖)→∞ as ‖xτi − xj‖ → ρki,2.

(12)

Interestingly, two things can be noticed from (11): i) the actual
dynamics of the robot x◦i is influenced by the interactions
of its mi sets of virtual points {x/,ki , xO,ki , x.,ki }, and ii) the
dynamics of themi sets of virtual points {ẋ/,ki , ẋO,ki , ẋ.,ki } are
identical to the actual dynamics of the robot ẋ◦i being them
rigidly attached to it.

At this point, it becomes clear that we can study the
stability of a multi-robot system x = [xT1 , . . . , x

T
n ]
T with
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Fig. 3. Mapping between the interaction graph GFOV
s = {V, EFOV

s } encoding
the pairwise interactions with limited field of view and the interaction graph
GFOV
s = {VFOV

, EFOV
s } encoding the equivalent pairwise interactions with

limited field of view for the extended system modeling.

limited field of view, by checking the stability of its extended
version x = [x1

T , . . . , xn
T ]T . To this end, starting from

the interaction graph GFOV
s = {V, EFOV

s }, which encodes
the pairwise interactions with limited field of view, we re-
quire a systematic way for constructing the interaction graph
GFOV
s = {VFOV

, EFOV
s }, which encodes the equivalent pairwise

interactions with limited field of view for its modeling based
on the extended system. Indeed, this will permit to build the
incidence matrices B and B+ associated to the graph GFOV

s

which are required to check the stability of the multi-robot
system with limited field of view by inspecting its extended
system as per Theorem 1.

At this point, in order to derive a systematic way to build
the interaction graph GFOV

s it suffices to notice that: i) for
each vertex i ∈ VFOV of the system with limited field of
view, the extended system has 3mi + 1 vertexes, that is
{i◦, i/,1, iO,1, i.,1, . . . , i/,mi , iO,mi , i.,mi} ∈ VFOV

; and ii)
for each directed edge (i, j) ∈ EFOV

s of the system with
limited field of view, the extended system has four edges, that
is{(i◦, j◦), (i/, j◦), (iO, j◦), (i., j◦)} ∈ EFOV

s . The reader
is referred to Figure 3 for a graphical interpretation of this
mapping. Notably, the well defined structure underlying this
mapping also permits to easily identify a deterministic mapping
between the two incidence matrices B and B+ of GFOV

s and
their counterparts B and B+ of GFOV

s . Given such as mapping,
we can directly verify the stability of coordinated topology
control with limited FOVs through application of Theorem 1.
Intuitively, the idea is to: i) consider an extended state with
4|Es| virtual points taken as replica of the actual agents; ii)
perform a suitable algebraic manipulation of the extended state
to zero out portions of the contributions corresponding to non-
interacting virtual points and iii) finally apply Theorem 1 on the
resulting extended states, yielding guaranteed stability. Since
this paper focuses on experimental validation and for the sake
of brevity, a rigorous proof of the application of Theorem 1 to
verify stability is not included.



Fig. 4. Four DJI Matrice 100s forming and maintaining a preselected stable
directed interaction graph in outdoor (bottom) and indoor(top) environments.

Fig. 5. Initial and final states of the all agents(red circles) in an indoor
experiment with agent 4 in agent 3’s FOV(one forward facing circular sector)
represented by FOV radii of the three virtual points(green circles) of agent 3
and the collision radius represented by solid black circle around agent 3.

IV. PORTABLE MULTI-ROBOT EXPERIMENTAL SETUP

We deployed a team of DJI Matrice 100 (M100) UAVs
and used an ultra-wideband (UWB) system, Pozyx [27], for
localization of the UAVs to control a stable FOV topology
according to our theoretical results. To conduct experiments of
topology control using onboard UWB localization, we place
six Pozyx anchor UWB nodes in the environment as shown in
Figure 4. Individual UWB tags are then mounted on each of
the UAVs from which the position measurement is obtained.
In the video of the experiment submitted, we demonstrate
limited FOV topology control of four UAVs operating in an
area of 30m × 20m. A stable directed interaction graph was
preselected as represented in Figures 4 and 5 and this graph is
maintained by all agents during experimentation. Also, note
that the orientation of x and y axes used in Gazebo and actual
experiments differ and hence there is a difference in orientation
of measurements between Gazebo and experiments.

1) Gazebo Simulation Results: It is evident in Figure 7
that agent 4 (leader) tracks a predetermined velocity reference
shown in Figure 6. To test the FOV controller’s capability
to tackle a non-trivial trajectory, we intentionally chose the

Fig. 6. Computed velocity reference from FOV controller for agents 1,2 and
3 in Gazebo with agent 4 receiving a predetermined velocity.

Fig. 7. Position measurement data for Gazebo simulation where agent 4
moves in oscillatory trajectory (y-position data) and all other agents act to
keep their neighbors in their respective FOVs.

velocity profile of the leader agent to have a cosine oscillation.
Consequently, the FOV controller computes reference velocit-
ies for agents 3,2 and 1 such that they maintain their neighbors
in their respective FOVs as shown for agent 3 in Figure 5.
From simulations, we realized that the dynamics of the selected
graph was such that agents 1 and 2 kept approaching each other
very closely. Hence, collision avoidance is implemented which
ensures all agents remain out of each other’s collision radii3

and still remain connected as shown in Figure 5. This is also
evident in the oscillating trend in the x-axis position (region
inside red circle) data in Figure 7 of agent 1 between 40 and 60
seconds where agent 1 moves in and out of agent 2’s collision
radius.

3Note that the collision radius in figure 5 is for diagrammatic representation
only and does not accurately represent the actual size of the radius used for
experiments.



Fig. 8. Computed velocity reference from FOV controller for agents 1,2 and
3 from indoor experiment with agent 4 receiving a predetermined velocity.

Fig. 9. Pozyx position measurement data for agents from indoor experiment.

2) Indoor Football Facility : The velocity reference profiles,
Figure 8, differ for the M100s when compared to the UAV
models in Gazebo due to the different underlying controllers
of the two systems and their physical differences. However,
the position data profiles, Figure 9, for all agents are similar
to that obtained from Gazebo simulation. For instance, the
position data of agents 1 and 2 in Figure 9 clearly show that
both agents move in and out of their collision radius having
the same oscillatory trend ( in and around red circle of agent
1’s y-position data) visible between 40 and 60 seconds and
also the cosine oscillation trend is prominently visible in the
x-position data of all agents, similar to leader agent 4.

3) Outdoor Drone Park : With wind speeds of approxim-
ately 10 mph, Figures 10 and 11 show the results of the outdoor
experiment. The results are similar to that of the experiment
conducted indoors. There is some induced noise from the
environmental disturbance evident in the position measurement

Fig. 10. Computed velocity reference from FOV controller for agents 1,2 and
3 from outdoor experiment with agent 4 receiving a predetermined velocity.

Fig. 11. Pozyx position measurement data for agents from outdoor experiment
with induced noise from windy outdoor conditions.

data in Figure 11. However, the controller appears to behave
similar to the indoor experiment, with agents 1 and 2 moving
in and out of each other’s collision radii (region in and around
red circle in figure 11 ).

V. CONCLUSIONS

In this paper,we extended a framework we developed for
studying stable motion and distributed topology control for
multi-robot systems with directed interactions to the case of
a multi-robot system with limited fields of view. Then, we
provided experimental results with a team of DJI Matrice
100 UAVs that demonstrated the effectiveness of the control
framework and showcased a portable multi-robot experimental
setup.
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